
UDC 536.75 + 536.24 

D E T E R M I N A T I O N  OF I N T E R N A L  H E A T  A N D  M A S S  T R A N S F E R  
P A R A M E T E R S  U S I N G  C H A R A C T E R I S T I C  F U N C T I O N S  OF THE 
T H E R M O D Y N A M I C S  OF I R R E V E R S I B L E  P R O C E S S E S  

A. G. Temkin 

Inzhenerno-Fizicheskii  Zhurnal, Vol. 9, No. 3, pp. 305-817, 1965 

Temperature and moisture content measurements are used to obtain exper imenta l  variables which are 
arguments of characteris t ic  functions of the Massieu type in the thermodynamics of irreversible processes. 
By means of these variables the thermal  diffusivity and dimensionless inertia, thermal  diffusion and 
phase transition parameters  are calcula ted.  

Determinat ion of internal transfer parameters  from mul t i -po in t  temperature measurements.  It has been shown [1] 

that from measurements of the temperature t(N0, r )  at a point No in a body and of  its mean moisture content,  which are 
exper imenta l  functions of t ime,  the fields of heat  and mass content can be reconstructed, i . e . ,  they may be expressed 

in terms of the exper imenta l  functions 

l (N, H) -- V l?~ (H) P~ (N) + .~n~ (m Q~ (N), (~) 

n~O 

u (N, H) = ~ r ~ (U) S. (N) + &~ (H) V~ (N). (2) 

In an actual  exper iment  these sums are always finite, smce the errors in the derivatives increase in geometr ic  
progression with increase of their  order. If the temperature is measured during the experiment  at the (r + 1)-th point  of 
the body N j, then, expressing temperature t ( N i + l  T) in terms of the temperature derivatives at point  N i, we may 

denote r by the finite sum 

A (Ni, Ni+~, z ) =  t(,u ~ ) -  t(Ni, ~)= 
1% m 

p : l  q ~ l  

the number of terms of which depends on the number n of derivatives of temperature t i ( r  ) and on the number m of 
derivatives of mean moisture content Uv(r), which are appreciably larger than their errors, i . e . ,  re l iab le .  The system 
(3) cannot be used to ca lcula te  transfer parameters  when the number of  re l iable  derivatives of moisture content m > 1, 
since its determinant  is then zero. Therefore, for mul t i -po in t  temperature measurements,  we must ei ther take t ime 
intervals small  enough for the drying rate U'v0- ) to be considered constant and U"v(T ) tO be neglected in each interval,  

or we must use temperature  measurements at successive t imes and allow for variat ion of u~,(r) and its derivat ives.  The 
first method is convenient for ca lcula t ing the thermal  diffusivity a and the complex s Ko, and the second for ca lcula t ing  

Lu and Pn. 

Determinat ion  of transfer parameters fro.m tw_ o-point  temperature measurement.So The finite sum containing 

re l iable  derivatives of the measur#d temperature t(N0, r )  -- t0(r) and moisture content u v (r)  

. (4) 

p = l  q = l  

permits  one to find the internal transfer parameters,  if  one uses its values at successive t imes 

z 1 < "c~ < ... < ' o r ;  r = n + m. (5) 

We shall designate products of radial  poIynomials  and powers of RZ/a 

~.p = (R ~ a - 0 p  Pp (N); -~q = (R~a -1) Qq (N), (6) 

and then the sum (4), written for moments of t ime rs, forms a set of equations from which ~ p and ~q may  be found. 

These unknowns contain the dimensionless internal transfer numbers e Ko, Lu, Pn and the geometr ic  parameter  RZa-lo 
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To determine the four parameters named, a set of four equations is sufficient.  We can set up Cr 4 = r l / ( r -4 )141  such 
systems from the ensemble (4), each permit t ing a calculat ion of its approximation to the transfer parameters .  For the 
calculations it is necessary to know the determinant  of system (4) 

t ; ( T 1 )  �9 �9 �9 t (a) (71) 

~ o o �9 �9 

�9 U; ('[1) " u(m) (':t) ] " - 

I 
�9 o , o 

i 
- -  

1~; ( ' [ r)  '(O n '  (7r)  t / ;  ( ' r r)  �9 u (m)( '~ r )  

and the determinants  D s obtained from this determinant  by replacing column S with the exper imenta l  temperature 
differences A(N o Ni, r )  = t(N i, r )  - t(N0, r ) .  

The thermal  diffusivity is given by the ratio 

(7) 

a ~- P1 (N) RSD/D1, (8) 

the complex dimensionless number for which is 

e [(0 ~- - -  Dn+I/D1, (9) 

the thermal  diffusion number 

Pn -= 2 (k + 2) (N 2 --N~) DD~ - -  [(k + 4) N~- -  kN 5] D~ (lo) 

k (2 - -  N 2 - -  N~) D1Dn+ 1 

and the inert ia simplex 

2 (k + 2) 
Lu-1 = k (2 - -  N 2 - -  N~) D, ~1  D~+, j  

( l l )  

Measurements of temperature and moisture content may  also be less accurate,  allowing calcula t ion only of their 
first derivatives.  In this kind of l inear approximation the temperature field is described by only three components 

A (N o, N, ~) [to (7) - - ,  No u; (7)] N2 - -  N~ R~ = , (12) 
2k a 

and it is quite insufficient for finding Lu and Pn. However, the diffusivity and the complex number may  be ca lcula ted  
even from such measurements 

a = - -  
2k 

r (No, ~) u; (~i) 

t' (No, "[5) u'~('~5) 

Ko = A (N O , N~, "q) 

I zx (No, NI, Ts) 

t' (No, ~) 

t' (No, 75) 

A (N o, N1, "~1) 

A (No, N1, ~2) 

a ( N o ,  N 1 ,  "[1) 

h (No, N1, ~5) 

u; 01) 

u; (~5) 

/A; ('[1) 

u; (~5) 

(13) 

Determinat ion of transfer cr i ter ia  using loca l  moisture content measurements.  The internal transfer parameters  
may  be found with the aid of  local  moisture content measurements,  as follows from sum (2) and the expressions for the 
radial  polynomials  Sp(N) and Vq(N), given in [1]. The corresponding system of equations is obtained from the sum 

n m 

p~ l  q~ l  

referred to t imes r l  < rz < 

first derivatives of  loca l  temperature t0(r) and of mean moisture content Uv(r ) 

111 . - - ~ x (  
u (N, ~) - -  u; (~) = -~- k + 2 a 

�9 . .  < r r .  In the crudest approximation the moisture content field is approximated by the 

X [Pn to (v) - -  (s I/o Pn + Lu -1) u; (7)]. (15) 

204 



If the diffusivity a and the complex e Ko are calculated previously from temperature measurements, then from r 
system 

.) (No, N .  N> %) = - -  t '  (No, %) Pn  ,-4- u~ (-r~) (a No Pn  + Lu-X), (16) 

in which the difference 

~o (No, N~, N~, " : )= 
2k (k --k 2) a 

[(k + 2) ~vg - -  k] R '~ 
[u 0%, "r) - -  u~, (-:)], (l'Z) 

we may find the thermal diffusion number 

~,~ (No, N .  N2, r 
Pn  = - -  

.;(~1) 

. ;  (~2) 

to (~) 

to (~) 

uv(~,) 
(18) 

and the inertia number 

t; ('~1) U; ('~1) t; (,q) - -  a Ko u;  ('h) ~ (No, N~, Ne, xl) 
Lu = : (19) 

In the stage of failing drying rate the moisture content at points on the body surface may be considered equal to zero. 
Then 

(N o, N 1, l, .c) = k (k + 2)a u~, ('~). (20) 
R~ 

The complex number 

3 = Lu -1  4- s Ko Pn, (21) 

which is also obtained by solving (16), is the ratio of the determinants 

to(~l) ,. (No, G,  G ,  ~) to (~0 ";('1) (22) 
3 =  

Internal transfer parameters as characteristic functions of the thermodynamics of irreversible processes. The inter- 
hal transfer parameters are represented in the following formulas as the ratio of determinants of the second order 

]f[~-f X(~I) ff(Zl) [ ~(T1) ' (~:1) I (23) 
x('c.) ,y('~) ~ (':0 ~ ('c~) ' 

in which the experimental quantities t'0(r), U'V(T), /X, W, w = X, y, ~ and ~ are taken at such times r l  and rz,  when 
these determinants differ from zero, i . e . ,  they are much greater than their errors. The transfer parameters must not be 
determined by the method described at constant drying rate or near its maximum, when all the above determinants 
vanish because of the steady temperature field. Times r t  = r and rz can always be taken sufficiently close to T = r +dr .  
According to Lagrange's mean theorem f ( r  + dr) = f ( r )  + f ' ( r ) d r ,  relation (4) goes over to the ratio of  the two 

Wronskians 

1 1 =  x ( - 0  v ( ' ~ ) l :  ~ (:) ~ ( ' 0 i .  (24) 
X" i , (#  y' (.~) ~' (~) ,q' (.~) ] 

Thus, an expression for the diffusivity may be obtained from (13) 

2 t' (No, ~) . ;  (~). a (No, G ,  ~) N 2 - -  NI 
_ ~ 2  

a 2k t" (No, -~) u:  (~) h '  (N o, N 1, T) 

. ;  (~) 

u'; (~) 
(25) 

and similar expressions for all the other internal transfer numbers may be found from (13), (18), (19) and (22): 

205 



e K O  - =  

A(N o , N 1, m) t'(mo,,r) 

A' (N o, Nx, 4) t" (No, ~) 

A (N o, NI ,  10 

h '  (N o, N 1, x) 

u;. (-0 / , 

uv (~)1 

(26) 

Ell 

P I ' I  = - -  

o> (No, N~, N~, z) u;  (~) 

o)' (No, N1, N~, z) u:  (z) 

r (N o, ~) 

t" (N o, ~) 

.; O) 

u; (~) 

t' (No, :) 

t" (N o, z) 

u; (~) 

. ;  (~) 

t '  (N o, z) - -  ~ Ko us ( J  

t" (N o, ~) - -  [e Ko u; (:)l '  

o~ (No, N1, N2, ~) I, 

t oJ' (No, N1, N2, ":) 

= 
t' (N o, ~) 

t" (No, :) 

~o (No, N1, N2, ":) 

o,' (No, N1, N~, ~) 

t' (No, ~) 

t" (N o, ~) 

"; (') I 
I 

t 

u. (D 

(27) 

(28) 

(29) 

where throughout the prime denotes differentiation with respect to t ime. 

For any of the transfer parameters (24)-(29) four equivalent forms may be written: 

(30) 

_ _ 

of which we may always choose the simplest. For this purpose new arguments must be introduced: 

Z = vlx; ~ = ~I~, (31) 

in the functions of which the transfer parameters are expressed either as derivatives or as characteristic thermodynamic 
functions of irreversible transfer processes of Massieu-Gibbs-Helmholtz type [2-4] .  

For diffusivity the experimentally observed functions of t ime are 

xo = u; (J, 

~ = . ;  (~), 

The arguments corresponding to the functions are 

zo = t ' (N o, 

y~ = t' (N o, ~), 

"l. = A (Nol N .  J .  

(32) 

:)/u; (~); % = a (No, N . . ) / u ;  (J, (33) 

for which the diffusivity proves to be proportional to the derivative 

a = - -  
N 2 - -  Ng 

2k k -o~%- J ~. , ,+.=co.s, (34) 

The complex e Ko (13), (22) is calculated from the experimental values 

= = t '  ( N  o, ~), x~ A (N O , Nx, % Ye 

~e --: h (N o, N~, z), ~iE = u'~ (z). 

The subsidiary arguments 

Z e = t' (N o, J / A ( N  O , N x, J ;  ~ E = u ; ( J / A ( N  O , N 1, ~) 

(35) 

(36) 

allow us to represent this complex as the derivative 
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 Ko=[2 ] 
L a~e No, (37) Nl=const 

It should be borne in mind, however, that the arguments Z E and gE of the complex e Ko are intimately connected with 
the diffusivity arguments 

Z e = Zal~a, r- e = lid.a, (38) 

and in its dependence on these variables the complex number 6 Ko is a characteristic function of the Massieu-Gibbs 
type: 

s. KO = Z a - -  ~,a ON-a- (39) 
0C., 

Experimental functions of the inertia simplex Lu. The thermal gradient number (18),(29) is found from the ex- 
perimental functions 

% = .'o (:), y ,  = ~ (No, G ,  G ,  :), 

~ = . ;  (~), % = t' (No, ~), 

to which correspond the arguments 

z ,  = o, 0\% N 1, N2, :)/u; b) ,  G = t' (No, ~ ) / s  (-) = Za. 

The thermal gradient number expressed in terms of  these functions 

Pn = --[OZplO~p] = - -[OZplaZ~] 

(28) has its experimental functions 

x L = ~,, (No, G ,  G ,  ~), & = t '  (N~ ~) - -  ~ No u;  (% 

= t '(N0, :), k = Uv (9 ,  ~L 

is als0 written as a derivative. 

The inertia simplex (19), 

which form arguments 

z~  = ~~ az , ,  r, L : z,,, 
Zp O :  a ' 

depending as follows, on the arguments of the foregoing transfer parameters; 

(40) 

G 0 G  
Z L = Z ,  a~-a 

From the general law (30) the inertia simplex 

(41) 

(42) 

(42a) 

(43) 

- - - - '  ~'L = Za '  (43a) 

OZc 
Lu -1 = Z~ a .~L 

is proportional to the derivative of its arguments. Substitution of  (43a) and allowance for the fact that 

o (ozo/ 

leads to a characteristic equation of Massieu-Gibbs type for the complex Lu 

Lu -1 = Zp - -  ~-a OZp 

The complex number (22), (29) is calculated from the experimental functions 

(44) 

(45) 
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which form the subsidiary arguments 

x ~ = t ' ( N o ,  x), g~ -=- o, (No, N~, N2, x), 
t 

~3 • t' ( N o ,  x), "~ = uv  (~), 
(46) 

Z~ = Zp/Za, ~.~ = 1/Z~. (47) 

In the functions of these arguments the complex ~ is expressed by an equation of  the Massieu-Gibbs-Helmholtz  type of 
the thermodynamics of irreversible processes 

3 ---= Z p - - Z  a �9 cgzp- . (48) 
OZa 

Clearly, the number Pn is expressed in l inear- f rac t ional  fashion in terms of the character is t ic  functions 8 Ko, Lu and 
9 ,  the arguments Za, ga and Zp of  which, in contrast to the arguments of the characteris t ic  functions of classical  

thermodynamics,  necessarily depend on the t ime r .  Thus the thermodynamic method of investigation is appl icable  to 
unsteady heat  and mass transfer processes. 

Calculat ion of transfer parameters as Massieu type characterist ics of  the thermodynamics of irreversible processes. 
Internal transfer parameters  have been ca lcula ted  from experiment  by M. V. Popov [5, 6]. A ceramic  plate  of thickness 

2R = 61 mm was used, the ini t ia l  moisture content being 375 kg/m a, porosity 38~ and 70 = 1464 kg /m a. The t emp-  
erature of the me ta l  radiators was 250" C. A thermocouple located on the surface was not used for the calculat ion,  

since it was irradiated by the radiator.  For the calculat ions a point 2 .5  mm away from the surface was chosen, its 
dimensionless coordinate being Nl = 0.902, and the second point was taken at the center  N O = 0. The ini t ia l  t empera -  

ture of the substance was  15 ~ C, the final 95 ~ C, and the numbers Pn and ~ Ko were referred to a temperature difference 
of 80 ~ C. Then the dimensionless temperature 

t = t ( x ,  " ~ ) - - 1 5 ~  
(49) 

95 ~ C - -  15 ~ C ' 

dimensioness t ime was referred to 500 rain: 

= ~ m i n . / 5 0 0  rain. ; (50) 

the dimensionless interval h = 0.04 corresponded to a t ime of 20 rain. Differentiation of temperature was carried out 

according to (7), and for the end (r = 0 and 31) and corner (r  = 16.8; 18 and 26 .7)po in t s  " l imi t"  formulas were used, 
permit t ing calcula t ion of left and right derivatives with respect to three exper imenta l  temperatures.  An intermediate  
method allowing determinat ion of derivatives with respect to four exper imenta l  values proved to be suitable for neigh-  
boring points. The drying curve did not have singularities, and the drying rate was found by differentiat ion in an in-  
terval  containing 5, 7, and 9 exper imenta l  values of the moisture content.  Differentiation of mass content when its 
values were small  brought in large errors, since the change of moisture center at the end of the process was comparable  
with the weighting error. For this reason the transfer parameters  were not ca lcula ted  at the point r = 30. 

Table 1 shows the exper imenta l  values of the exper imental  functions and their derivatives with respect to t ime r .  
It may be seen from the graph of [5, 6] that the evaporation surface at t ime r l  = 18 passes through the point N1 = 0. 902, 
and at t ime r2 = 26.7 it reaches the center of  the body No = 0. The corner points of the temperature curves correspond 
to these t imes.  In the interval (7; 13) there is a very diffuse maximum of  drying rate, in the vic ini ty  of which the 

arguments Za and ga are prac t ica l ly  constant, and the derivat ive OZjO~a cannot be evaluated .  For this reason the 
period r e  (8; 11) of  constant drying rate is not used for calculat ing the transfer parameters  and is omit ted from Table 2. 
The derivatives of arguments Za and ~a in the increasing drying rate stage r e (1; 7) and in the fall ing drying rate stage 

r E (12; 18) were ca lcula ted  from seven points [7, 8], and at the end of the process from the last three r e  (27; 29). 

The phenomenological  system of heat  and mass transfer equations was described in [9] for zonal  ca lcula t ion of 

the process, i . e . ,  it  was applied to points that are not divided by a surface of phase transition, where the bond between 

the moisture and the substance is the same. It was applied in just this way in references [10-16,  18, 19, etc .  ]. From 
t ime r l  = 18 even up to r2 = 26.7, the body center N o = 0 and the point Nt = 0. 902 were separated by the evaporation 
surface studied. Therefore in the t ime range r e  (r l ;  r2) there are no expansions of (1) and (2), since they were obtained 

by solving a system in which movement  of the phase transition surface was not taken into account.  Naturally, al l  the 
effects of these expansions-re la t ions  of  the Massieu-Gibbs t y p e - c a n n o t  be used in the t ime  interval (T1;r2). The 
inequal i ty  
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OZa/O~ a < O, (51) 

corresponds to such a location of the evaporation surface between points for which arguments Za and C a were constructed. 
The Massieu-Gibbs relations for the transfer parameters occur until  t ime r ,  and after t ime r~, when both points N o and 
Nt are located in one zone, and the expansions of (1) and (2) are valid. Until the evaporation surface, passes through a 
point, the moisture travels along the capillaries as a connected liquid, but after the surface passes it becomes a dis- 

connected system of threads and migrates along the capillaries solely as vapor. It can be seen from Table 2 that after 
time r = 2 the complex s Ko increases monotonically, and becomes steady near the value 1.09 in the stage of constant 

Table i 

Experimental Values and Their Derivatives. 

25"~ u v (r t (No, ~) t (N,, ~) A u; (~) t '  (No ~) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

1,000 
O. 980 
0.943 
0,895 
0.841 
0.786 
0.731 
O. 675 
O. 621 
0,569 
0.516 
0.461 
0.405 
O. 3,47 
O. 289 
0,234 
O. 185 
0.147 
0.119 
0,099 
0.083 
0,063 
0,055 
0.042 
0.031 
O. 022 
0.015 
0.010 
0. 007 
0 004 

0.0000 
O, 186 
0.31I 
O. 348 
O, 362 
O, 367 
0,371 
O. 374 
0,377 
O. 378 
O, 378 
O, 379 
O. 380 
O-381 
O, 382 
O. 383 
O, 388 
0,451 
0,542 
O, 620 
O. 659 
0,690 
0.7!3 
0,719 
0,724 
0,730 
01733 
0,750 
0. 795 
0,835 

0.000 
O. 266 
O. 349 
O, 380 
O. 392 
O. 395 
O. 398 
0,401 
0,404 
0.405 
0.406 
0.407 
0,408 
0,408 
0.409 
0,410 
0,416 
0,512 
0,598 
0.690 
O. 755 
0.809 
0 . 8 4 3  
0.867 
O, 899 
0,917 
0,924 
O, 938 
O. 955 
O, 965 

0,000 
0.080 
0.038 
0,032 
0.030 
0,028 
0,027 
0,027 
0,027 
0,027 

�9 0.028 
0.028 
0.028 
0.027 
0,027 
0.027 
O. 028 
O, 061 
O, 056 
0.070 
0,096 
0,119 
O, 130 
O, 148 
O. 175 
O. 187 
0.191 
0. 188 
O. 160 
O. 130 

--0,287 
--0.  705 
--1,007 
--1,158 
--1,235 
--1.317 
--1,349 
--1,356 
- -  1,356 
--1.361 
--1.  372 
--1. 381 
- -  1,382 
--I. 355 
--I. 285 
--1.171 
--1.025 
--0,871 
--0. 709 
--0.  567 
--0.456 
--0,377 
--0,322 
--0. 277 
--0,233 
- - 0 .  189 
--0,159 
--0.124 
--0,087 
--0,063 

5,412 
3,854 
2,215 
1,032 
O. 347 
O. 153 
0,093 
0.070 
O, 045 
0,027 
0,017 
0.020 
O. 025 
0.025 
0,045 
0. 080 
0,175 
2,438 
2. O80 
1.485 
1,025 
O, 650 
O. 397 
0.228 
O. 128 
O. 108 
0.038 
1. 438 
1.003 
O. 882 

drying rate and at the start of falling drying rate, i . e . ,  until  the main  mass of liquid breaks up into threads. After the 

moisture has passed into the disconnected state, the complex ~ Ko increases sharply, this being due to increase of 

and decrease of the heat capacity of the moist material  c = (0.21 + 0,256), as well as possible increase of p. The 

comparatively large value of s Ko at the very beginning of the process may evidently be explained by additional ab- 

sorption of heat, which is expended in breaking down the surface film of the moist substance and creating a capillary 

surface of evaporation. This area may be calculated from the value of ~p and the forces of surface tension, 

The argument Z a is a dimensionless number, since the temperature t0(N, r)  and moisture content uv(r ) are 

referred to their scale values and are dimensionless. The argument C a has the dimension of time: 

 a,(No, N1, a (No, Nr, e) 25 s (e) = T hr, (52) 

where the t ime & is expressed in hours. The thermal diffusivity was calculated according to 

a = 31.75.10-60Z......~ mS/hr. 
a~.a 

It decreases as the moisture content decreases, and, at the end of the process, when the moisture breaks up into threads, 

and conductive heat transfer through the liquid is imp0ssible, it is approximately six times less than at the beginning.  

The decrease in the thermal conductivity of the substance is even more notable: 
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"+, = a c  ~, = a[358 + 436 ul W/m'~ 

which is referred, as are the other transfer parameters, to the mean temperatures l" and moisture contents 1I on the 
segment [0; 0.902]. 

Table 2 

Arguments of the Characteristic Functions and Internal Transfer Parameters ~ Ko and k as 
Functions of Temperature and Moisture Content. 

time, 
min 

20 

40 

60 

8O 

100 
120 
140 

24O 

260 

280 

3OO 

320 

340 
360 

540 

560 

580 

t ,  o C  

32.0 

40.9 

43.7 

44.8 

45, 1 

45.4 
45.6 

46.1 

46.2 

46.2 

46,3 

46.7 

52.6 
59.9 

80.0 

82.8 

85.2 

t l  e , 
kg water 

kg substance 

0,251 

0,241 

0.229 

0,215 

0,201 

0.187 
0.173 

0.104 

0,089 

0.074 

0.060 

0,047 

0.038 
0.030 

O, 003 

0.002 

0.001 

z a 

--5.467 

--2,200 

--0,891 

--0,281 

--0,116 

--0.069 
--0.052 

--0.0181 

--0.0185 

--0.0350 

--0,0683 

--0,171 

~2,800 
--2.930 

--9.66 

--12.14 

--14,21 

Ca 

--0.1130 

--0,0377 

--0.0276 

--0,0243 

--0.0213 

--0.0200 
--0.0199 

--0,0203 

--0.0199 

--0.0210 

--0.0230 

--0,0273 

--0,0702 
--0,0790 

--1,516 

--1.839 

--2.003 

Numerical 
expressions 

OZa 
- - - - 17 .21  

0"~ 

0 ~-a 
-- O. 287 

O'r 

OZa 
- -  = 60,0 
0 ~-a 

a=22.5.10 -4 

C) Za 
- -  = - -  12.89 

0 ~-a 
- -  = - -  0.253 
Ox 

OZa 
= 50.95 

0 ~-a 

a =  19.1.10 -4 

OZa 
- -  - -  56.88 

0~ 

0 (a 
-- 6.08 

Oz 

OZa 
-- 9.35 

0 Ca 

a = 3, 51.10 --4 

W / m .  degree 

1.77 

1.72 

1.68 

1.63 

1.57 

1.51 
1,47 

1,02 

0.98 

0,92 

0.87 

0,84 

0,80 
0.78 

0.13 

0.13 

0,13 

K o  

1,34 

0.06 

0.77 

1.18 

1.15 

1.13 
1.14 

1 . 0 2  

1 , 0 0  

1 . 0 4  

1.11 

1,22 

0,78 
1,10 

4,52 

507  

4.53 

The numbers Pn, Lu and the moisture conductivity of the substance are presented in Table 3. Calculation of 

these numbers is possible when the moisture content at one point of the body is known. It may be considered that from 

the beginning of the fall in drying rate (r = 12), the moisture content of the body surface is zero. In this case the ex- 

perimental  quantity 

yp=o (No, lVl,l, )- (k +2)   .oza 
2 = " ~  

and the Zp number is 

Zp - (k + 2): 
2 

(N~ - -  Ng) OZa u~ ('Q 
OKo u;(,) 

In Table 3 it has been calculated from the formula 

Zp(0; 0.902; 1" ~ ) = - - 1 . 2 2  0Z" t/v (T) 

' a q  u;( , )  " 

The simplex Lu "l has been computed as a characteristic function of the thermodynamics of irreversible processes (45), 
and its arguments Zp and ga have been evaluated as functions of t ime,  The sign of the thermal diffusion number is 

explained by the difference in writing the transfer equation system in [1] and [11, 12]. Its value decreases sharply when 

the moisture breaks up into threads. 
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The inverse problem of external  heat  and mass transfer may be solved from the internal parameters  and the 
gradients of the reconstructed fields on the body surface. 

Table  3 

Values of the Argument Zp and of the Parameters Pn, Lu and a m 

z Numerical  
expressions 

L u  a m .  10 t 

240 

260 
280 
300 
320 
340 
360 

540 

560 

580 

18.66 

16,32 
13,77 
12.33 
11.30 
10.95 
11.10 

5.10 

4.84 

4.07 

- -  32,04 
Or 

P n = - - 2 . 3 6  

O_~Z. = _ 12.89 
O-c' 

Pn - - - -0 .227 

0.0471 

0,0530 
0.0609 
0.0656 
0.0677 
0.0504 
0.0474 

00.120 

0.114 

0.120 

0.90 

1.01 
1.16 
1.25 
1.29 
0.964 
0.905 

0.422 

0.401 

0.422 

Relation between the thermal  diffusivity and the phase transition cri terion.  The diffusivity was ca lcula ted  from 

(84), in which R is a character is t ic  dimension of  the body, N and No are dimensionless coordinates of the points of 
temperature measurement,  and Z a and ga are arguments of character is t ic  functions of Massieu-Gibbs type in the ther-  
modynamics of irreversible processes, which depend appreciably on t ime.  

In the calculat ions it is convenient to determine the number A, which is proportional to the diffusivity 

A = 2k [N 2 - -  No2] -1 a Oo R-K (53) 

It coincides with the Fourier number to within a mult iplying factor. Instead of  the argument ga, which has the dimension 
of t ime,  it is convenient to introduce its dimensionless variant 

~ = ~ / ~ o ,  (s4) 

divided by the t ime scale &0. Clearly,  in this notation, the dimensionless diffusivity is 

A = az/a ; z = 

and the Kossovich number is 

Ko = Z -- $ A. (6G) 

It follows from (54) that the variat ion of argument Z of  the thermodynamic  functions 6 Ko and A may  be repre-  
sented by the integral  

Z - - Z o  = SAd~., (57) 
~o 

and the variat ion of  the second argument of these character is t ic  functions may also be expressed in terms of the d imen-  
sionless diffusivity A and the other argument Z 

z 
[ A-1 --~o = .  dZ. 
Zo 

(58) 

Substitution of (57) is the foregoing equal i ty  leads to the 'expression 

~Ko = Z 0 + Ji: A d ~ - - ~ , A ,  (sg) 
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by which the complex number s Ko is represented in the form of a function of number A and of the other dimensionless 
argument g, both of which may be determined experimentally. If (58) is substituted in (56), the complex s Ko will be 
represented as a function of the diffusivity and the argument Z 

e I<~ = Z - -  A [ ~~ + {A-~ dZ] j (60) 

The arguments of the characteristic functions may be found from (55) and (56) as functions of the number ~ Ko. 
In particular, 

Z ---- ~ Z 0 ; o  t -  ~S ~ K ~  (61) 
to 

Hence the dimensionless thermal diffnsivity may be represented as a function of the number 6 Ko: 

A = Zo ~o 1 - -  ~ K o  ~-1  - -  .f e K o  ~-2 d ~, (63) 
to 

[ 1 . A = ( Z  KO)~o ~exp --~0 

The integral type relations (58), (59), (63), (64) allow us to calculate one transfer parameter by integration from 
the other experimentally determined parameters. Of course, these calculations are possible when the arguments of the 
Massieu-Gibbs type characteristic functions are known from experiment as a function of time. All these integral rela- 
lions derive from the differential relations 

OsKo OlnA 
- -  = , ( 6 5 )  
OZ 0 In 

0 ~ Eo 10A 2 
---- - -  - -  - - -  , ( 6 6 )  

O ln~ 2 OZ 

which are equivalent to their definitions (55) and (56). 

Relation between thermal diffusion and inertia numbers. The thermal diffusion and inertia numbers 

P n =  OII  Lu_ 1 II _OlI  
- o-z- ; - ; - a T  ( I I  = & )  (67) 

are interrelated by the somewhat different differential relations of the thermodynamics of irreversible processes 

0 Lu -1 0 Pn 
- , ( 6 s )  

OZ 0 In 

O Lu -1 == AS 0 Pn 
01nr OZ ' (69) 

which is due to the different role of the time-dependent arguments Z, g and 11 in the definitions (67). However, the 
integral formulas, which permit calculations of one transfer parameter from the other, hold in this case also. It foIlows 
from the definitions (67) that 

IIo Zo 
Z - - Z o = j '  P n - l d I I ;  I I - - I I o = . f  PndZ;  (70) 

1[ Z 

II  II0 _ __~ Lu_l~_2d~;  (71) 

II  

( = (o exp jo (II - -  L u - t ) - i d H .  (72) 
lIo 

The inertia number may be represented as a function of the thermal diffusion number and the parameters of 
arguments Z and g 
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z 
Lu - 1  = II0.4- ~OZ__ Pn - -  f P n d Z ,  (73) 

O~ zo 

if (70) is substituted into the definition of Lu "1 (67). It is more important to express the thermal diffusion number in 
terms of the inertia number and the same arguments Z and g. Substitution of (71) into the definition of Pn (67) leads to 
the relation 
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