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Temperature and moisture content measurements are used to obtain experimental variables which are
arguments of characteristic functions of the Massieu type in the thermodynamics of irreversible processes.
By means of these variables the thermal diffusivity and dimensionless inertia, thermal diffusion and
phase transition parameters are calculated.

Determination of internal transfer parameters from multi-point temperature measurements, It has been shown [13
that from measurements of the temperature t(Ng, 7) at a point Ny in a body and of its mean moisture content, which are
experimental functions of time, the fields of heat and mass content can be reconstructed, i.e., they may be expressed
in terms of the experimental functions )

LN, Hy= Y47 #H) P, (V) + ul” (H) Q, (V), W
n=0

w(N, Hy = Y (07 (H) S, (V) + ul® (H)V, (V). )
n=0

in an actual experiment these sums are always finite, since the errors in the derivatives increase in geometric
progression with increase of their order. If the temperature is measured during the experiment at the (r + 1)-th point of
the body N, then, expressing temperature t(Ni+; 7) in terms of the temperature derivatives at point Nj, we may
denote r by the finite sum ,

AN, Ny, ©) = (Npgg, ©) — (N, 7) =
” R \? . R \7
= Et;m () (_a_) P, (N)+§;u§)‘7>(r) (7) Q,(V), (3)
q-r_— .

p=l 2
the number of terms of which depends on the number n of derivatives of temperature t;(7) and on the number m of
derivatives of mean moisture content u,(r), which are appreciably larger than their errors, i.e., reliable. The system
(3) cannot be used to calculate transfer parameters when the number of reliable derivatives of moisture content m > 1,
since its determinant is then zero. Therefore, for multi~point temperature measurements, we must either take time
intervals small enough for the drying rate u'y(r) to be considered constant and u"(7) to be neglected in each interval,

or we Imust use temperature measurermnents at successive times and allow for variation of uj(r) and its derivatives. The
first method is convenient for calculating the thermal diffusivity a and the complex & Ko, and the second for calculating
Lu and Pn.

Determination of transfer parameters from two-point temperature measurements. The finite sum containing
reliable derivatives of the measurgd temperature t(Ng, T) = to{T) and moisture content uy (7)

AW, N, ) = 2’5’” () P, (N) ( Sai)!’+ }:ufﬂ) (=) Q) (%2*)‘? (4)
‘ g=1

p=1
permits one to find the internal transfer parameters, if one uses its values at successive times

Ty LTy L aee KTy T =041, (5)

We shall designate products of radial polynomials and powers of R%/a

§ = (R*a=1)P P, (N); n, = (R*a™")Qy (N), (6)

and then the sum (4), written for moments of time 7¢, forms a set of equations from which §p and Tq may be found.
These unknowns contain the dimensionless internal transfer numbers & Ko, Lu, Pn and the geometric parameter R% L,



Lo _ 4.
To determine the four parameters named, a set of four equations is sufficient. We can set up Cp = ri/(r=4)141 such
systems from the ensemble (4), each permitting a calculation of its approximation to the transfer parameters. For the
calculations it is necessary to know the determinant of system (4)

fo(ty) . . ‘”’(\1) Tdp(ty) .. Lutm™(xy)
D= '. 9]
. tCI) (v) . . (n) (%) Uy () . . ut(x)

and the determinants Dg obtained from this determinant by replacing column § with the experimental temperature
differences ANy Nj, 7) = t(Nj, 7) — t(Ny, 7).

The thermal diffusivity is given by the ratio )
a = P,(N)R*D/D;, | ®)

the complex dimensionless number for which is

£ I'(O = — Dn+1/D17 (9)

the thermal diffusion number

pp o _2(k+2) (N2 —Ng) DD, — [(k + 4) N3 — EN*| D} 0
: k(2—N%—N§)DiD,., ’
and the inertia simplex
Lot 26D DID D), .
k(2 — N2—N%) D, D,

Measurements of temperature and moisture content may also be less accurate, allowing calculation only of their
first derivatives. In this kind of linear approximation the temperature field is described by only three components

, . 2 __ N2 p2
ANy, N, T)=[to(1)—sKouv(t)]—N—2;-N—°§ , (12)

and it is quite insufficient for finding Lu and Pn. However, the diffusivity and the complex number may be calculated
even from such measurements

N2 NO R ¢ (an 1) uz’:(ﬁ) A(NO, Ny, ) u;(»tl)
2k , . .

' (No, T2) o (Ta) A(Ng Ny %) g (1s)
(13)

A(Ng, Ny, =) £ (N, 1) ANy, Ny, 1) (1)

, ,
ANy, Ny, 1) (N, ) A(Ng, N1, ) uo(z)
Determination of transfer criteria using local moisture content measurements. The intemal transfer parameters

may be found with the aid of local moisture content measurements, as follows from sum (2) and the expressions for the
radial polynomials SP(N) and Vq(N), given in {1]. The corresponding system of equations is obtained from the sum

U(N, ) — (1) = Et“’)(«-.)s ) ( ) 2 W0 (Y (N)(Ro) (14)

referred to times 13 < 72 < ... < 71. In the crudest approximation the moisture content field is approximated by the
first derivatives of local temperature ty(1) and of mean moisture content Uy(T)

| 11 NR
N, —— = — —— — — —_—

H 9=, ) 2[k+2 k]ax
X [Pnty(z) — (s Ko Pn + Lu—") uy (<)), (15)
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If the diffusivity a and the complex & Ko are calculated previously from temperature measurements, then from the
system

o(Ng, Ny, Ny, 1) = —1 (N, 75) P -= y (15) (= Ko P+ Lu—1), (16)

in which the difference
2k(k+ 2)a

A[,L’V,N,T: B Af, Tk 4
w(Ng, Ny, Ny, 1) {(k—}—?)Né—k]R“ [u(Ny, ©) —u,{7)] amn

we may find the thermal diffusion number
o (Ng, Niy Ny, 1) 2t (51) to (1) o (%)
Pn = — : (18)
o(No, Niy Na, w) Uy (to) fo (t9)  Uo(To)

and the inertia number
to(s1) uo(zy)| | fo(m)—eKoug(r) (N, Ny, Ny, 1)
Lu= 3 . {(19)
fo ("2) ”z; ) t(; (‘52) —eKo u; (1'2) w (No, Nl, Ny, o)

In the stage of falling drying rate the moisture content at points on the body surface may be considered equal to zero.
Then
k(k42
wwmm,hﬂ=~ijgﬁ%m. (20)

The complex number

= Lu~'+eKoPn, (21

which is also obtained by solving (16), is the ratio of the determinants

té (71) ‘”(No, N, Ny, ) _ t(; (171) ”1; (x2) (22)

fy () o (Ny, Ny, Ny, =) ty (1) 1o ()

Internal transfer parameters as characteristic functions of the thermodynamics of irreversible processes. The inter-
nal transfer parameters are represented in the following formulas as the ratio of determinants of the second order

n=% (=) y(=) E(ty) n(t)
| X (T2) Y (T2 E(ta) % (ta)

(23)

in which the experimental quantities t%(7), u'y(7), &, w, w =%, y, £and 7 are taken at such times 7y and 7, when
these determinants differ from zero, i.e., they are much greater than their errors. The transfer parameters must not be
determined by the method described at constant drying rate or near its maximum, when all the above determinants
vanish because of the steady temperature field, Times T{ =7 and T; can always be taken sufficiently close to 7 = 7 +dr.
According to Lagrange’s mean theorem fr +dry= fr) + f(r)dr, relation (4) goes over to the ratio of the two
Wronskians

= ‘ ’ o Y ) : (T) : =) (24)
LX(=) Y (D) g 7 (x) |
Thus, an expression for the diffusivity may be obtained from (13)
NN W wm@] AN Ny a3
a=-—Kk : (25)

2k

¢ (Ng, 1)ty () A (N, Npy 1)t (2)

and similar expressions for all the other internal transfer numbers may be found from (13), (18), (19) and (22):
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A (NO’ va T) t, (No’ T) A (N01 Nl,v 1,') u; (T)
e Ko = : , (26)

A (Ngy Nyt) t"(Noyo)| | A Ny Ny ®)  uy (5)

o (Ny, Ny, N, 7) u, (v) ' (Ny, ) u, (x)
Pn=— : ) 2m
o (Ng, Ny, Ny, 7)1y (7) t"(Ng, ©) Uy (%)

' (Ng» 2 g (3] |t/ (Ny ©)—eKoua(z) (N, Ny, Ny 7)
Lu = : , (28)
" (N ©) uy (3)| | & (Nyw ) — [eKoug ()] o (Ny, Ny, Ny, 1)
¢ (NO’ T) ® (NO’ Nl’ N2’ T) 4 (No, 7) LLZ’, ('C) }
d= : , (29)
t"(Ng, ©) o' (Ny, Ny, Ny, 7) " (Ngy 1) Uy (7)

where throughout the prime denotes differentiation with respect to time.

For any of the transfer parameters (24)=(29) four equivalent forms may be written;

- TR/ CIEVET-

(30)
(Ve TR LY [
(."q) [x}/[vz] (E Y g
of which we may always choose the simplest. For this purpose new arguments must be introduced:
Z =y/x; C=mjE, (31)

in the functions of which the transfer parameters are expressed either as derivatives or as characteristic thermodynamic
functions of irreversible transfer processes of Massieu-Gibbs-Helmholtz type [2-4].
N

For diffusivity the experimentally observed functions of time are

Xy = Uy (7), Y =1t (N,, ),

(32)
fa = Us (7), Mg = AN, Ny, 7).
The arguments corresponding to the functions are
Zy =1 (No» Dy (7); L = ANy, Ny <)ug(2), (33)
for which the diffusivity proves to be proportional to the derivative
2__ N2 0z,
o= =No p [,} : (34)
ok a‘&a Ny, Ni=const
The complex & Ko (13), (22) is calculated from the experimental values
Xp=A(N,, N, 1), yp=1t'(Ng, 1),
(38)
EE = A (NO’ Nl’ T)’ Mg = ulu (T)
The subsidiary arguments
Zy=1(Ny VAWNg Ny, %) Cp =1, (1)/A (N, Ny, 7) (36)

allow us to represent this complex as the derivative
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: Ko = [?ZE (87)

aCE ]No, Ny=const

It should be bome in mind, however, that the arguments Zg and {g of the complex € Ko are intimately connected with
the diffusivity arguments

Zp=Zofour Cp =1/, (38)

and in its dependence on these variables the complex number & Ko is a characteristic function of the Massieu~Gibbs
type:
. . 0Z
cKo=2Z2,—¢, =% . (39)
' 0L, :
Experimental functions of the inertia simplex Lu. The thermal gradient number (18),(27) is found from the ex-
perimental functions

4

X, =uy(z), y,=0(Ny Ny Ny, 7),

: (40)
§=1tu(v) M =1 (No %),
to which correspond the arguments
qzumNpmﬂwng;ﬂmﬂmW=4. (41)
The thermal gradient number expressed in terms of these functions
(42)
Pn = — [0Z,/0,] = — [0Z ,/0Z,]
is also written as a derivative.
The inertia simplex (19), (28) has its experimental functions
X =0 (No, Ny, Na, 1), Yy, = t'(Ny, 1)—2Ko u, (), (42a)
) gL = LL;) (:)’ nL = t’ (N07 ’:)5
which form arguments
L, 02
= L =27, (43)
Z, 0%,
depending as follows, on the arguments of the foregoing transfer parameters;
A
=220 =7, (43a)
Z, 08,
From the general law (30) the inertia simplex
Lu—!=Z; 07t (44)
3e3
is proportional to the derivative of its arguments. Substitution of (43a) and allowance for the fact that
9 (aza.::O
0z, \ at,
leads to a characteristic equation of Massieu-Gibbs type for the complex Lu
0z
Lul=2Z,—1[, -2 (45)
o¢

*a

The complex number (22), (29) is calculated from the experimental functions
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xs = tl (Nﬁv T)v ya = U)(NO; le N21 T)y
5, =1 (Ng, %), 1, =1y (3),

(46)

which form the subsidiary arguments

Zy=Z7,07, lo=1/Z,. (a7

In the functions of these arguments the complex 3 is expressed by an equation of the Massieu-Gibbs-Helmholtz type of
the thermodynamics of irreversible processes

: 0z
d=172,—1Z, a_Z”_ . (48)

a

Clearly, the number Pn is expressed in linear-fractional fashion in terms of the characteristic functions & Ko, Lu and
3, the arguments Zgr &4 and ZP of which, in contrast to the arguments of the characteristic functions of classical
thermodynamics, necessarily depend on the time 7. Thus the thermodynamic method of investigation is applicable to

unsteady heat and mass transfer processes.

Calculation of transfer parameters as Massieu type characteristics of the thermodynamics of irreversible processes.
Internal transfer parameters have been calculated from experiment by M. V. Popov [5, 6]. A ceramic plate of thickness
2R = 51 mm was used, the initial moisture content being 375 kg/m3, porosity 38%, and y, = 1464 kg/ma. The temp-~
erature of the metal radiators was 250° C. A thermocouple located on the surface was not used for the calculation,
since it was irradiated by the radiator. For the calculations a point 2.5 mm away from the surface was chosen, its
dimensionless coordinate being N; = 0,902, and the second point was taken at the center Ny = 0. The initial tempera-
ture of the substance was 15° C, the final 95° C, and the numbers Pn and & Ko were referred to a temperature difference
of 80° C. Then the dimensionless temperature

t:7(x, 7) — 15°C

; (49)
95°C—15°C

dimensioness time was referred to 500 min:
< = 9 min. /500 min.; (50)

the dimensionless interval h = 0.04 corresponded to a time of 20 min. Differentiation of temperature was carried out
according to (7), and for the end (7 = 0 and 31) and cormer (7 = 16.3; 18 and 26.7) points "limit" formulas were used,
permitting calculation of left and right derivatives with respect to three experimental temperatures. An intermediate
method allowing determination of derivatives with respect to four experimental values proved to be suitable for neigh-
boring points. The drying curve did not have singularities, and the drying rate was found by differentiation in an in-
terval containing 5, 7, and 9 experimental values of the moisture content. Differentiation of mass content when its
values were small brought in large errors, since the change of moisture center at the end of the process was comparable
with the weighting error, For this reason the transfer parameters were not calculated at the point 7 = 30.

Table 1 shows the experimental values of the experimental functions and their derivatives with respect to time 7.
It may be seen from the graph of [5, 6] that the evaporation surface at time Ty = 18 passes through the point N; = 0,902,
and at time 7, = 26.7 it reaches the center of the body Ng= 0. The corner points of the temperature curves correspond
to these times. In the interval (7; 13) there is a very diffuse maximum of drying rate, in the vicinity of which the
arguments Zg and {q are practically constant, and the derivative 0Z,/0(, cannot be evaluated. For this reason the
period Te (8; 11) of constant drying rate is not used for calculating the transfer parameters and is omitted from Table 2.
The derivatives of arguments Zg and {q in the increasing drying rate stage 7€ (1; 7) and in the falling drying rate stage
Te (12; 18) were calculated from seven points [7, 8], and at the end of the process from the last three 7€ (27; 29).

The phenomenological system of heat and mass transfer equations was described in [9] for zonal calculation of
the process, i.e., it was applied to points that are not divided by a surface of phase transition, where the bond between
the moisture and the substance is the same. It was applied in just this way in references [10-16, 18, 19, etc.]. From
time 7; = 18 even up to 7, = 26.7, the body center Ny = 0 and the point Ny = 0.902 were separated by the evaporation
surface studied. Therefore in the time range ¢ (T4; 73) there are no expansions of (1) and (2), since they were obtained
by solving a system in which movement of the phase transition surface was not taken into account. Naturally, all the
effects of these expansions—relations of the Massieu-Gibbs type—cannot be used in the time interval (T4;75). The
inequality
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02,/0T, < 0. (51)

corresponds to such a location of the evaporation surface between points for which arguments Zg and {, were constructed.
The Massieu=Gibbs relations for the transfer parameters occur until time 7; and after time 7,, when both points Ny and
N, are located in one zone, and the expansions of (1) and (2) are valid. Until the evaporation surface, passes through a
point, the moisture travels along the capillaries as a connected liquid, but after the surface passes it becomes a dis-
connected system of threads and migrates along the capillaries solely as vapor. It can be seen from Table 2 that after
time 7 = 2 the complex & Ko increases monotonically, and becomes steady near the value 1.09 in the stage of constant

Table 1

Experimental Values and Their Derivatives.

%5: thy (%) t (No, 7) t(Ny, 1) A u; (1) # (Ng =)
0 1.000 0.0000 0.000 0.000 —0.287 5.412
1 0.980 0,186 0.266 0.080 —0.705 3.854
2 0.943 0.311 0.349 0.038 —1,007 2.215
3 0.895 0.348 . 0,380 0.032 —1.158 1.032
4 0.841 0.362 0.392 0.030 —1.235 0.347
5 0.786 0.367 0.395 0.028 —1,317 0.153
6 0.731 C.371 0.398 0.027 —1.349 0.093
7 0.675 0.374 0.401 0.027 —1.356 0.070
8 0.621 0.377 0.404 0,027 . —1.356 0.045
9 0.569 0.378 0.405 0.027 —1.361 0.027
10 0.516 0.378 0.406 - 0.028 —1.372 0.017
11 0.461 0,379 0.407 0.028 —1.381 0.020
12 0.405 0.380 0,408 0.028 —1,382 0.025
13 0.347 0.381 0,408 0.027 —1.355 0.025
14 0.289 0,382 0.409 0.027 —1.285 0.045
15 0.234 0.383 0.410 0.027 —1.171 0.080
16 0.185 0.388 0.416 0.028 —1.025 0.175
17 0.147 0.451 0.512 0.061 —0.871 2.438
i8 0.119 0.542 0.598 0.056 —0,709 2.080
19 0.099 0,620 0.690 0.070 I —0.567 1.485
20 0.083 0.659 0.755 0,096 —0.456 1.025
21 0.063 0.690 0.809 0,119 —0.377 0.650
22 0.055 0.7'3 0.843 0,130 —0.322 0.397
23 0.042 0.719 0.867 0.148 —0.277 0.228
24 0.031 - 0.724 0,899 0.175 —0.233 0.128
25 0.022 0.730 0.917 0.187 —(.189 0.108
26 0.015 0.733 0.924 0.191 —0.159 | 0.038
27 0.010 0.750 0.938 0.188 —0.124 1,438
28 0.007 0.795 0,955 0.160 —0.087 1.003
29 0.004 0.835 0.965 0.130 —0.063 0.882

drying rate and at the start of falling drying rate, i.e., until the main mass of liquid breaks up into threads. After the
moisture has passed into the disconnected state, the complex &€ Ko increases sharply, this being due to increase of &
and decrease of the heat capacity of the moist material ¢ = (0. 21 + 0.256), as well as possible increase of p. The
comparatively large value of € Ko at the very beginning of the process may evidently be explained by additional ab-
sorption of heat, which is expended in breaking down the surface film of the moist substance and creating a capillary
surface of evaporation. This area may be calculated from the value of € p and the forces of surface tension.

The argument Zg is a dimensionless number, since the temperature to(N, 7) and moisture content uV(T)'are
referred to their scale values and are dimensionless. The argument {y has the dimension of time:

(No: Nl! ﬁ) :25_

A
LNy, Ny )= , h 52
o (Noy Ny, ) _uv(ﬁ) 3 I, (52)

where the time & is expressed in hours. The thermal diffusivity was calculated according to

0z
a = 31.75- 108 =& m?/hr.
0%,
It decreases as the moisture content decreases, and, at the end of the process, when the moisture breaks up into threads,
and conductive heat transfer through the liquid is impossible, it is approximately six times less than at the beginning.
The decrease in the thermal conductivity of the substance is even more notable:
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A =acy=a[358 4 436u] w/m-C
which is referred, as are the other transfer parameters, to the mean temperatures T and moisture contents U on the
segment [0; 0.902].
Table 2

Arguments of the Characteristic Functions and Internal Transfer Parameters & Ko and A as
‘ Functions of Temperature and Moisture Content.

time, . . kg water , . Numerical A,
min ’ “" kg substance a a expressions W/m - degree “ Ko
3 B} 8Z,
20 32.0 0.251 —5.467 | —0.1130 o= 17.21 1.77 1.34
T
40 40.9 0.241 ~2.200 | —0.0377 8, 28 1.72 0.06
60 43.7 0.229 —0.891 | —0.0276 or = 02 1.68 0.77
80 4.8 0.215 —0.281 | —0.,0243 0Z, 60.0 1.63 1.18
100 45.1 0.201 —0.116 | —0.0213 0ty 1,57 1.15
120 45.4 0.187 —0.069 | —0.0200 a=22.5.10~* 1.51 1.13
140 45.6 0.173 —0.052 | —0.0199 1.47 1.14
240 46.1 0.104 —0.0181 | —0,0203 ‘;Z" = —12.89 1.02 1.02
260 46.2 0.089 —0.0185 | —0.0199 dly 0 953 0.98 1.00
280 46.2 0.074 —0.0350 | —0.0210 ot 0.92 1.04
300 46.3 0.060 —0.0683 | —0.0230 Za _ 0 o 0.87 1.11
320 46.7 0.047 0171 | —0.0273 ar,~ 0 0.84 1,92
340 52.6 0.038 —92.800 | —0.0702 @ —19.1.10—4 0.80 0.78
360 59.9 0.030 —2.930 | —0.0790 0.78 1.10
dZ,
540 80.0 0.003 —9.66 —1.516 o= —56.88 0.13 4.52
T
al,
560 82.8 0.002 —12.14 | —1.839 o= 6.08 0.13 5.07
T
' 0Z,
580 85.2 0.001 —14.21 | —2.003 —2_9.35 0.13 4.53
(9 Ca
a=3,51.104

The numbers Pn, Lu and the moisture conductivity of the substance are presented in Table 3. Calculation of
these numbers is possible when the moisture content at one point of the body is known. It may be considered that from
the beginning of the fall in drying rate (7 = 12), the moisture content of the body surface is zero. In this case the ex-
perimental quantity

~ k42 0
yp: u)(NO, Nl,l,T) = — '(_‘jé“l(N%'—Ng)afa = uU(T),

a

and the Zp number is

(B+2) o o 0Z, uy(x)
Z o= 2T (NY— Ny Za 297
g 2 ™ O)OCa iy ()

In Table 3 it has been calculated from the formula
Z,(0; 0,902; 1; 7) = — 1.22 %2 e (¥)
08, uy(r)

The simplex Lu™! has been computed as a characteristic function of the thermodynamics of irreversible processes (45),
and its arguments Z, and &, have been evaluated as functions of time. The sign of the thermal diffusion number is
explained by the difference in writing the transfer equation system in [1] and [11, 12]. Its value decreases sharply when
the moisture breaks up into threads.
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The inverse problem of external heat and mass transfer may be solved from the internal parameters and the
gradients of the reconstructed fields on the body surface.

Table 3

Values of the Argument Zp and of the Parameters Pn, Lu and a,,

J g4 Numerical
g.= Z N Lu a,,-10*
=) E p expressmns
[l
oz
240 18.66 6_£:—32.04 0.0471 0.90
= :
260 16,32 0.0530 1.01
280 13.77 Pp-=—2.36 0.0609 1.16
300 12.33 0.0656 1.25
320 11.30 0.0677 1.99
340 10.95 0.0504 0. 964
360 11.10 0.0474 0.905
_ 0z,
540 5.10 Fo=— 19.89 00.120 0.492
T
560 4.84 0.114 0.401
Pn = — 0,297
580 4.07 0.120 0.422

Relation between the thermal diffusivity and the phase transition criterion. The diffusivity was calculated from
(34), in which R is a characteristic dimension of the body, N and N, are dimensionless coordinates of the points of
temperature measurement, and Zg and §, are arguments of characteristic functions of Massieu-Gibbs type in the ther~
modynamics of irreversible processes, which depend appreciably on time.

In the calculations it is convenient to determine the number A, which is proportional to the diffusivity

A= 2r[N? —NiJla9, R (58)

It coincides with the Fourier number to within 2 multiplying factor. Instead of the argument {,, which has the dimension
of time, it is convenient to introduce its dimensionless variant

L=/ (54)
divided by the time scale ). Clearly, in this notation, the dimensionless diffusivity is
A=0z7)0; Z=17, (55)
and the Kossovich number is
tKo=7—CA. (56)

It follows from (54) that the variation of argument Z of the thermodynamic functions € Ko and A may be repre-
sented by the integral

€
Z—Z(,:jAdC_, (57)

and the variation of the second argument of these characteristic functions may also be expressed in terms of the dimen-
sionless diffusivity A and the other argument Z

Z
L=l = f A-1dZ. (58)

Zy
Substitution of (57) is the foregoing equality leads to the ‘expression

4
Ko =Z,+ [ AdL—(4, (59)
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by which the complex number & Ko is represented in the form of a function of number A and of the other dimensionless
argument {, both of which may be determined experimentally. If (58) is substituted in (86), the complex &Ko will be
represented as a function of the diffusivity and the argument 2

. z
eKo:Z——A[CO—I—jA—le] . (60)
Zo , »

The arguments of the characteristic functions may be found from (55) and (56) as functions of the number & Ko.
In particular,

' <
Z=1Zt ' —tf <Kol 2dg, 61)
Co
C z 1
— =exp || (Z—zKo)ydZ | . (62)
CO 'Zo
Hence the dimensionless thermal diffusivity may be represented as a function of the number & Ko:
St
A=Z,l;' — =Kol — [ eKoldg, (63)
%o »
—1 z
A=(Z—<Ko)l exp [——5‘ (Z—aKo)—IdZ] . (64)
Zo

The integral type relations (58), (59), (63), (64) allow us to calculate one transfer parameter by integration from
the other experimentally determined parameters. Of course, these calculations are possible when the arguments of the
Massieu-Gibbs type characteristic functions are known from experiment as a function of time. All these integral rela-
tions derive from the differential relations

aeKO____ 0lnA

) (65)
0z dIng
o 2
9=Ko 1 a_A__ , (66)
d1ng 2 07
which are equivalent to their definitions (55) and (56).
Relation between thermal diffusion and inertia numbers. The thermal diffusion and inertia numbers
an : oIl
Pn=—-"3 lul=—-¢-—= (II=2Z) (67)
YA ot P
are interrelated by the somewhat different differential relations of the thermodynamics of irreversible processes
dLu=* dPn
= , (68)
0z oIng
OLu?t JPn
_Ii___ = A2 _P_~_ , (69)
dlng az

which is due to the different role of the time-dependent arguments Z, { and II in the definitions (67). However, the
integral formulas, which permit calculations of one transfer parameter from the other, hold in this case also. It follows
from the definitions (67) that

11, Zo
Z—Zy= ! Pn—ldll; M—1, = f PndZz; (70)
It z
II II, ¢
=~ —— = —{ Lu—t(2d¢; (71)
& & c{ ~ ,
b
C="0loexpj (Il — Lu=*)~'d1I. : (72)

I,

The inertia number may be represented as a function of the thermal diffusion number and the parameters of
arguments Z and §
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Z
Lu=' =11, + Cg—% Pn — j PndZ, (73)

if (70) is substituted into the definition of Lu™ (67). It is more important to express the thermal diffusion number in
terms of the inertia number and the same arguments Z and {. Substitution of (71) into the definition of Pn (67) leads to
the relation

Pn = %Z§ [{ Lu=1z—2d¢ + Lu—t 1 —11, CJIJ . (74)
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